一致性hash算法java实现

一致性hash算法java版本简单实现

package com.java4all.grouth.consistent;

import java.util.LinkedList;
import java.util.List;
import java.util.SortedMap;
import java.util.TreeMap;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 一致性hash算法java简易实现
 * @author IT云清
 * 参考:https://blog.csdn.net/zhanglu0223/article/details/100579254
 */
public class ConsistentHash {

    private static final Logger LOGGER = LoggerFactory.getLogger(ConsistentHash.class);

    /**
     * 虚拟节点个数
     * 每个真实节点对应的虚拟节点个数
     */
    private static final int VIRTUAL_NUM = 5;

    /**
     * 虚拟节点
     * eg:<656715414,192.168.1.1&&VN3>
     * 真实节点数量一般偏少,引入虚拟节点来平衡
     * 每个真实节点对应多个虚拟节点,这样每个节点尽可能在hash环上均匀分布,可以根据虚拟节点找到真实节点
     */
    private static SortedMap<Integer,String> shards = new TreeMap<>();

    /**
     * 真实节点
     */
    private static List<String> realNodes = new LinkedList<>();

    /**
     * 模拟初始节点
     */
    private static String[] servers = {"116.116.1.1", "116.116.1.2", "116.116.1.3", "116.116.1.5", "116.116.1.6"};


    /**
     * 初始化虚拟节点
     */
    static {
        for (String server : servers) {
            realNodes.add(server);
            LOGGER.info("添加真实节点{}",server);
            for(int i = 0;i < VIRTUAL_NUM; i ++){
                String virtualNode = server + "&&VN" + i;
                int hash = getHash(virtualNode);
                shards.put(hash,virtualNode);
                LOGGER.info("添加虚拟节点{},hash为{}",virtualNode,hash);
            }
        }
    }


    public static void main(String[]args){
        test2();
    }

    public static void test2(){
        //测试定位node
        LOGGER.info(getSever("aa"));
        LOGGER.info(getSever("涨三"));
        LOGGER.info(getSever("num_19120000"));
        LOGGER.info(getSever("num_19120000"));
        LOGGER.info("------------------");
        //测试添加节点
        addNode("192.192.116.1");
        addNode("192.192.116.2");
        LOGGER.info("------------------");
        //测试删除节点
        delNode("116.116.1.1");
    }
    /**
     * 获取真实节点ip
     * @param str 字符串
     * @return
     */
    public static String  getSever(String str){
        //计算hash
        int hash = getHash(str);
        Integer key = null;
        //寻找最近的虚拟node
        SortedMap<Integer, String> tailMap = shards.tailMap(hash);
        //获取在hash环上 右侧最近的虚拟节点的key
        key = tailMap.isEmpty() ? shards.lastKey() : tailMap.firstKey();
        //根据hash获取虚拟节点
        String virtualNode = shards.get(key);
        //返回虚拟节点的真实ip
        return virtualNode.substring(0,virtualNode.indexOf("&&"));
    }



    /**
     * 添加节点
     * @param node
     */
    public static void addNode(String node){
        if(!realNodes.contains(node)){
            realNodes.add(node);
            LOGGER.info("新增真实节点上线,{}",node);
            for(int i = 0;i < VIRTUAL_NUM;i ++){
                String virtualNode = node + "&&VN" + i;
                int hash = getHash(virtualNode);
                shards.put(hash,virtualNode);
                LOGGER.info("新增虚拟节点{},hash为{}",virtualNode,hash);
            }
        }

    }

    /**
     * 删除节点
     * @param node
     */
    public static void delNode(String node){
        if(realNodes.contains(node)){
            //下线真实节点
            realNodes.remove(node);
            LOGGER.info("真实节点下线,{}",node);
            for(int i = 0;i < VIRTUAL_NUM; i++){
                String virtualNode = node + "&&VN" + i;
                int hash = getHash(virtualNode);
                //移除虚拟节点
                shards.remove(hash);
                LOGGER.info("下线虚拟节点{},hash为{}",virtualNode,hash);
            }
        }
    }

    /**
     * FNV1_32_HASH算法
     * @param str 任意字符串
     * @return 返回int类型的hash值
     */
    private static int getHash(String str) {
        final int p = 16777619;
        int hash = (int) 2166136261L;
        for (int i = 0; i < str.length(); i++) {
            hash = (hash ^ str.charAt(i)) * p;
        }
        hash += hash << 13;
        hash ^= hash >> 7;
        hash += hash << 3;
        hash ^= hash >> 17;
        hash += hash << 5;
        // 如果算出来的值为负数则取其绝对值
        if (hash < 0) {
            hash = Math.abs(hash);
        }
        return hash;
    }
}

已标记关键词 清除标记
 本次课程会带着大家学习Hash算法,从源码的角度去学习算法,更加容易理解的方式去学习,能够更高效的吸收学到的内容,也能培养出能够独自看源码,分析源码的能力。 Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。   哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映射到一个有限的地址区间上,并以关键字在地址区间中的象作为记录在表中的存储位置,这种表称为哈希表或散列,所得存储位置称为哈希地址或散列地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。   通过将单向数学函数(有时称为“哈希算法”)应用到任意数量的数据所得到的固定大小的结果。如果输入数据中有变化,则哈希也会发生变化。哈希可用于许多操作,包括身份验证和数字签名。也称为“消息摘要”。   简单解释:哈希(Hash算法,即散列函数。它是一种单向密码体制,即它是一个从明文到密文的不可逆的映射,只有加密过程,没有解密过程。同时,哈希函数可以将任意长度的输入经过变化以后得到固定长度的输出。哈希函数的这种单向特征和输出数据长度固定的特征使得它可以生成消息或者数据。
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页